Respiratory Protection Code of Practice

Content Owner: Occupational Health

Custodian: H&S Programs & Projects

H&S Discipline: Central Health & Safety Services

Program: Occupational Health

Document Number: CEN-EHS010

Version: 1.2

Review Cycle: 2 years

Revised Date: January 9, 2015

Issued Date: January 30, 2015

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
<th>Date</th>
<th>Approvals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COP Updated to reflect current state of respiratory use at Cenovus and provide further information on respirator use</td>
<td>January 09, 2015</td>
<td>Originator: Occupational Health; Reviewer(s): MOC discussion board reviewers; Occupational Health; H&S Programs and Projects; Approver(s): Central H&S Services</td>
</tr>
</tbody>
</table>
Table of Contents

1.0 Purpose ...4

2.0 Scope ..4

3.0 Respiratory Protection ..4
 3.1 Hierarchy of Controls ..4
 3.2 Respiratory Hazards ..4
 3.3 Respiratory Protective Equipment – Overview.......................................5
 3.4 Respirator Fit Testing ..6
 3.5 Selection ..6
 3.6 Use ..7
 3.7 Care ...8

4.0 Roles and Responsibilities ...8

5.0 Training and Competency ...9
 5.1 Training ..9
 5.2 Competency Verification ..10

6.0 Quality Assurance ...10
 6.1 Performance Measurement ..10
 6.2 Management of Change ...10
 6.3 Practice Verification ...10

7.0 Glossary ...11

8.0 References ...12
 8.1 External Documents ..12
 8.2 Internal Documents ..12

Appendix I: Acceptable Facial Hair for Tight-fitting Respirators13
Appendix II: Unacceptable Facial Hair for Tight-fitting Respirators14
Appendix III: User Seal Check Procedures ..15
List of Figures
Not applicable

List of Tables
Table 1: Respiratory Protective Equipment Overview..5
Table 2: RPE Selection Criteria..7
Table 3: Roles and Responsibilities ..8
Table 4: Terms and Definitions..11
Table 5: External Document References..12
Table 6: Internal Document References ..12
1.0 Purpose

The purpose of the Respiratory Protection Code of Practice (COP) is to provide operational guidance on the selection, use and care of respiratory protective equipment in accordance with Alberta Occupational Health and Safety Code.

2.0 Scope

The Cenovus Respiratory Protection COP applies to Cenovus worksites and encompasses Cenovus work activities where respiratory protective equipment is used. Firefighting or related activities are exempt from this COP.

3.0 Respiratory Protection

3.1 Hierarchy of Controls

Respiratory protective equipment (RPE) is an example of personal protective equipment (PPE). In the hierarchy of control measures, engineering and administrative controls take precedence over PPE. See CEN-EHS019 Hazard Assessment and Control Practice for details.

RPE should be used as a last resort when practical and feasible engineering and administrative control options are not available or have been exhausted. RPE may supplement engineering and administrative controls to offer an extra layer of protection if deemed necessary.

3.2 Respiratory Hazards

Respiratory hazards are airborne particulates, chemicals or biological agents that can be inhaled, causing adverse health effects. Respiratory hazards exist in many forms and can arise from different work processes or activities. Examples of respiratory hazards include:

- H₂S gas released from sour produced water
- Benzene vapour from the dehydration still column
- Naturally occurring radioactive materials (NORM) from a spent dehydration unit filter
- Silica dust from cement cutting and sandblasting
- Oil mists off of a compressor engine
- Fumes from a welding operation
- Refractory ceramic fibres from insulation removal inside a boiler
- Hantavirus from mice droppings
- Smoke from a forest fire
- Oxygen deficient environments
3.3 Respiratory Protective Equipment – Overview

Respiratory protective equipment can be classified into one of two categories: air-purifying respirators (APR), or atmosphere-supplying respirators (ASR). These respirators differ in how breathing air is delivered to the user. Air-purifying respirators remove air contaminants by passing ambient air through an air-purifying element. Atmosphere-supplying respirators deliver clean air from a compressed air system to the user.

At Cenovus, respirators must be National Institute of Occupational Safety and Health (NIOSH)-approved. Demand type atmosphere-supplying respirators are not acceptable.

Descriptors of the commonly used respirators at Cenovus worksites are outlined in Table 1.

<table>
<thead>
<tr>
<th>Respirator Class</th>
<th>Respirator</th>
<th>Assigned Protection Factor*</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air-Purifying Respirator</td>
<td>N95 Mask</td>
<td>10x OEL</td>
<td>✓ Lightweight and disposable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Protects against particles and droplets</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ No maintenance required</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✗ Only protects against particles, mists and droplets</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✗ Does not protect against gases or chemical vapours</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✗ Cannot equip chemical filters</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✗ Comparatively low APF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✗ Does not protect against oxygen deficiency</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✗ Negative pressure inside mask may draw in contaminants if not fitted and worn correctly</td>
</tr>
<tr>
<td></td>
<td>Half-Mask</td>
<td>10x OEL</td>
<td>✓ Lightweight and allows user to be mobile</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓ Does not require auxiliary equipment (e.g. tanks, airlines)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✗ Does not offer universal protection; offers specific protection only with the correct filters</td>
</tr>
<tr>
<td></td>
<td>Full-Face</td>
<td>100x OEL</td>
<td>✗ Filters can be overloaded/spent when used beyond capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✗ Comparatively low APF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✗ Does not protect against oxygen deficiency</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✗ Negative pressure inside mask may draw in contaminants if not fitted and worn correctly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✗ Care and maintenance required</td>
</tr>
</tbody>
</table>
Respirator Class

<table>
<thead>
<tr>
<th>Respirator Class</th>
<th>Respirator</th>
<th>Assigned Protection Factor*</th>
<th>Characteristics</th>
</tr>
</thead>
</table>
| Atmosphere Supplying Respirator (Positive Pressure only) | (Full-face) SABA | 1,000x OEL | ✓ Universal protection against air contaminants
✓ Sustained supply of breathing air
✗ Mobility is limited due to the airline
✗ Breathing air system requires care and maintenance
✗ Mask and air supply require care and maintenance |
| SCBA | | 10,000x OEL | ✓ Universal protection against air contaminants
✓ Allows user to be mobile
✗ Limited supply of breathing air
✗ Mask and tank require care and maintenance |

*Assigned Protection Factor (APF) offered is valid only if user has been quantitatively fit-tested for the particular mask (brand, model, and size) to be worn.

3.4 Respirator Fit Testing

Prior to using a respirator, including N95 masks, the user must undergo respirator fit testing by a qualified person in accordance with test methods set out in *CSA Z94.4-02 Selection, Use, and Care of Respirators*. This testing verifies the user is capable of wearing a respirator and that a satisfactory fit can be achieved. Respirator fit testing is carried out:

- Prior to initial respirator use
- Every two years thereafter
- When there is a change in the respirator used (brand, model, size)
- When there is a change in the user’s physical condition that could impact respirator use

Asset teams that presently fit test using a qualitative method should transition to a quantitative method.

3.5 Selection

The correct selection of a respirator is critical to the health and safety of the user and requires knowledge in chemical safety, exposure evaluation, work task demands, and RPE performance characteristics. Factors to consider and their impact on RPE performance are provided in
Table 2.
Table 2: RPE Selection Criteria

<table>
<thead>
<tr>
<th>Factors to Consider</th>
<th>Air-Purifying Respirator</th>
<th>Atmosphere-Supplying Respirators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air contaminant type</td>
<td>Cartridge/filter selection</td>
<td>No impact (except strong corrosives)</td>
</tr>
<tr>
<td></td>
<td>(organic vapour, acid gas, ammonia, particulate, etc.)</td>
<td></td>
</tr>
<tr>
<td>Physical state of contaminants</td>
<td>Cartridge/filter selection</td>
<td>No impact</td>
</tr>
<tr>
<td></td>
<td>(gas/vapour vs. particulate)</td>
<td></td>
</tr>
<tr>
<td>Concentrations of contaminants/</td>
<td>Respirator selection</td>
<td>No impact (up to maximum use concentration)</td>
</tr>
<tr>
<td>OEL of contaminants</td>
<td>(half-mask vs. full face)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cartridge/filter change-out schedule</td>
<td></td>
</tr>
<tr>
<td>Length of Task</td>
<td>Respirator selection</td>
<td>SABA – No impact</td>
</tr>
<tr>
<td></td>
<td>(half-mask vs. full face)</td>
<td>SCBA – limited by tank capacity</td>
</tr>
<tr>
<td></td>
<td>Cartridge/filter change-out schedule</td>
<td></td>
</tr>
<tr>
<td>Oxygen deficiency (Outside of 19.5-23%)</td>
<td>Cannot use</td>
<td>No impact</td>
</tr>
<tr>
<td>IDLH</td>
<td>Cannot use</td>
<td></td>
</tr>
<tr>
<td>Oil mists</td>
<td>Cartridge/filters selection</td>
<td>No impact</td>
</tr>
<tr>
<td></td>
<td>(oil-proof filters – P100)</td>
<td></td>
</tr>
<tr>
<td>Skin/Eye Absorption and Irritation</td>
<td>Respirator selection</td>
<td>No impact</td>
</tr>
<tr>
<td></td>
<td>(half-mask vs. full face)</td>
<td></td>
</tr>
</tbody>
</table>

At Cenovus, particulate filters will be P100 (oil-proof with a filtering efficiency of 99.97%), with the exception of disposable N95 masks.

Consult Cenovus Occupational Health occupational.health@cenovus.com for assistance when selecting a respirator or filter/cartridge.

3.6 Use

At any time, an employee who is unsure if he or she is fit to wear a respirator due to medical or physical conditions should consult Health & Wellness or a physician. Similarly, non Cenovus workers should consult their company’s health department or a physician.

In order for a respirator to be effective, a tight seal between the respirator face piece and the user’s face must be achieved. When using a respirator, the user must:

- Be acceptably clean shaven, as illustrated in Appendices I & II, to ensure a good seal
- Remove anything that breaks the seal, including glasses side arms, hair, clothes, jewellery
- Consult their supervisor on the use of contact lenses
- Conduct a seal check as instructed by a qualified person or per manufacturer’s recommendations consistent with instructions on Appendix III
The breathing air supplied to an atmosphere-supplying respirator must conform to *CSA Z180.1-00 Compressed Breathing Air and Systems*. The equipment that supplies the breathing air must also conform to the CSA standard, the manufacturer’s specifications, or certified by a Professional Engineer.

3.7 Care

Respirators should be cleaned, sanitized, inspected, and stored in accordance with manufacturer’s recommendations or a procedure developed by the Asset Team.

4.0 Roles and Responsibilities

The following responsibilities apply to this practice:

<table>
<thead>
<tr>
<th>Table 3: Roles and Responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role</td>
</tr>
<tr>
<td>---</td>
</tr>
</tbody>
</table>
| Business Leaders and Frontline Supervisors | • Communicate and implement the RPE Code of Practice at their operations or functional areas of authority
• Demonstrate ownership and leadership by actively setting a positive example
• Allocate and make available the necessary financial and human resources that are required to functionally implement this practice
• Confirm workers are aware of their roles and responsibilities as outlined in this section of the practice
• Confirm workers using respirators are trained, and knowledgeable about the equipment they are using
• Provide feedback to the document owner or representative concerning proposed changes or improvements to this document |
| Operations Health & Safety Field Teams | • Conduct worksite observations and assessments on a regular basis to verify compliance with the expectations outlined in the RPE practice
• Coach workers who do not understand or comply with the requirements outlined in this practice
• Assist with the implementation and communication of the documented requirements
• Provide feedback to the document owner or representative concerning proposed changes or improvements to this document |
| Central Health & Safety Services | • Monitor and collect feedback related to this document to verify RPE program effectiveness
• Lead document reviews and revisions as per the expectations described in this document
• Provide subject matter expertise on RPE when requested by Business Leaders or other |
<table>
<thead>
<tr>
<th>Role</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>functional teams</td>
<td></td>
</tr>
<tr>
<td>Assurance Teams (COMS Assurance and EHSR Compliance Audit)</td>
<td>• Lead, organize and conduct audits to verify program compliance, identify gaps and suggest improvement opportunities</td>
</tr>
</tbody>
</table>
| Worker | • [Staff] Complete RPE e-learning on Learning Management System (LMS) every 2 years
• [Service Provider] Complete a level of training equivalent to Cenovus’ RPE e-learning every 2 years.
• Complete respirator fit testing in accordance with test methods set out in this practice, and be in possession of a valid fit testing certificate
• Understand all aspects of this practice and its intent, follow this information during work operations
• Use RPE in accordance with the training received and the identified hazards
• Care and maintain RPE as per training or manufacturer’s recommendations |

5.0 Training and Competency

Competency describes the knowledge and skills required to successfully perform the technical aspects of a job. A worker must be able to demonstrate competency in safely performing work tasks or using equipment.

5.1 Training

It is expected that all personnel involved in this process will have training and the appropriate competency to perform their roles.

Frontline supervisors and workers should review this document prior to conducting work that requires respirator use.

Personnel using RPE require training every two years on the following topics:

- Recognition of hazardous air contaminants
- Awareness of advantages and limitations associated with the RPE they receive
- Instruction on how to put on and take off a respirator
- Instruction on how to perform a seal check
- Information on care of the respirator

5.2 Competency Verification

Competency will be validated through formal, theory-based evaluations and practical skill demonstration. All theory-based training requires a written knowledge check (e.g. test, quiz, exam) that will be reviewed and assessed by a competent instructor. Practical skill assessments of task completion and equipment use must be conducted by a competent supervisor or mentor.
Workers may be required to attend additional training sessions or complete further on-the-job training if performance deficiencies are identified through formal assessments.

All written evaluations and practical skill assessments must be documented and retained in the worker’s personnel file. Records may be maintained in hard copy or electronically.

6.0 Quality Assurance

6.1 Performance Measurement

Compliance with this practice and program effectiveness shall be assessed through program assessments and internal audits, or other measurement criteria as specified in the COMS Assurance Standard. Measurement can also be accomplished through the tracking of appropriate Key Performance Indicators (KPI).

Business functions or departments impacted by this practice must include compliance and program effectiveness verifications in their business assurance program. Performance will be monitored and reported within the responsible departments at least every two years.

Central Health and Safety Services will review Cenovus-wide program KPIs at a minimum every two years in conjunction with program review and update activities.

6.2 Management of Change

Proposed changes to this practice can be directed to H&S Programs and Projects.

6.3 Practice Verification

The document owner will complete and document reviews of this practice, as follows:

- At minimum once every two years
- If there is a significant regulation or industry best practice change that indicates the need for review
- If an incident investigation indicates the causes were related to unclear or inadequate written instructions described within this practice

If frequent and multiple variances are required due to operational needs, the reason(s) will be investigated and the document owner will determine if there is a business need to update the practice.

If submitted MOC requests indicate gaps or significant improvement opportunities, the document owner will determine if there is a business need to update the practice.
Glossary

Definitions and acronyms for safety documents are described in CEN-EHS243, Definitions and Acronyms. The following definitions and acronyms are specific to this document and are adopted from Z94.4-02 Selection, Use and Care of Respirators:

Table 4: Terms and Definitions

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air-purifying respirator (APR)</td>
<td>A respirator with an air-purifying filter, cartridge, or canister that removes specific air contaminants by passing ambient air through the air-purifying element</td>
</tr>
<tr>
<td>Atmosphere-supplying respirator (ASR)</td>
<td>A respirator that supplies the respirator user with breathing air/gas from a source independent of the ambient atmosphere</td>
</tr>
<tr>
<td>Assigned protection factor (APF)</td>
<td>The anticipated level of respiratory protection that would be provided by a properly functioning respirator (or class of respirators) that has been properly fitted to a and trained user</td>
</tr>
<tr>
<td>Occupational exposure limit (OEL)</td>
<td>MA maximum concentration of airborne contaminants deemed to be acceptable as defined by the authority having jurisdiction</td>
</tr>
<tr>
<td>Fit test</td>
<td>The use of a qualitative or quantitative method to evaluate the fit of a specific make, model, and size of respirator on an individual</td>
</tr>
<tr>
<td>Maximum use concentration</td>
<td>The maximum concentration of an airborne contaminant from which an employee is expected to be protected when wearing a respirator</td>
</tr>
<tr>
<td>NIOSH</td>
<td>National Institute of Occupational Safety and Health – governing body that sets minimum standards for RPE</td>
</tr>
<tr>
<td>LMS</td>
<td>Learning management system</td>
</tr>
<tr>
<td>PPE</td>
<td>Personal protective equipment</td>
</tr>
<tr>
<td>Qualified person</td>
<td>An individual who possesses the knowledge, experience, and training to fulfill the competencies of the role(s) defined in respective guiding standards</td>
</tr>
<tr>
<td>Qualitative fit test</td>
<td>A pass/fail test method that relies on the subject’s sensory response to detect a challenge agent in order to assess the adequacy of respirator fit</td>
</tr>
<tr>
<td>Quantitative fit test</td>
<td>A test method that uses an instrument to assess the amount of leakage into the respirator in order to assess the adequacy of respirator fit</td>
</tr>
<tr>
<td>RPE</td>
<td>Respiratory protective equipment</td>
</tr>
<tr>
<td>Self-contained breathing apparatus (SCBA)</td>
<td>A respirator that has a portable supply of breathing gas and is independent of the ambient atmosphere. SCBAs include open-circuit and closed-circuit respirators</td>
</tr>
<tr>
<td>Immediately dangerous to life and health (IDLH)</td>
<td>An atmosphere that poses an immediate threat to life, or that will cause irreversible adverse health effects, or that will impair an individual’s ability to escape</td>
</tr>
</tbody>
</table>
8.0 References

8.1 External Documents

The following external documents support this practice:

<table>
<thead>
<tr>
<th>Document Type or Number</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Guideline for the Development of a Code of Practice for Respiratory Protective Equipment</td>
</tr>
<tr>
<td>CSA</td>
<td>Z94.4-02 Selection, Use and Care of Respirators</td>
</tr>
<tr>
<td></td>
<td>Z94.4-11 Selection, Use and Care of Respirators</td>
</tr>
<tr>
<td></td>
<td>Z180.1-00 Compressed Breathing Air and Systems</td>
</tr>
<tr>
<td>US NIOSH</td>
<td>NIOSH Respirator Selection Logic 2004</td>
</tr>
<tr>
<td>US OSHA</td>
<td>Small Entity Compliance Guide for the Respiratory Protection Standard</td>
</tr>
</tbody>
</table>

8.2 Internal Documents

The following Cenovus documents support this practice:

<table>
<thead>
<tr>
<th>Document Type or Number</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy</td>
<td>Corporate Responsibility Policy</td>
</tr>
<tr>
<td>CEN-EHS-REG787</td>
<td>Regulatory Definitions and Acronyms</td>
</tr>
<tr>
<td>CEN_EHS019</td>
<td>Hazard Assessment and Control Practice</td>
</tr>
</tbody>
</table>
Appendix I: Acceptable Facial Hair for Tight-fitting Respirators

A. Clean-shaven, ideal for a good seal

B. Amount of facial hair that will typically allow a good seal

C. Moustache that does not interfere with the sealing surface, valves, or respirator function

D. Soul patch that does not interfere with the sealing surface, valves, or respirator function

(Images showing facial hair styles)

Adopted from *Z94.4-11 Selection, Use and Care of Respirators*
Appendix II: Unacceptable Facial Hair for Tight-fitting Respirators

E. Soul patch that will interfere with the respirator seal in the chin area on elastomeric facepieces

Facial hair and sideburns that will interfere with the sealing surface

F. This facial “shadow” (not clean-shaven) will interfere with the sealing surface of a half or full facepiece. It will also compromise a secondary seal inside a tight-fitting hood-style respirator.

Degradation of fit can occur during cumulative work hours when an individual grows this amount of facial hair.

G. Moustache is too thick and too long (down around edge of mouth); will contact a sealing surface and interfere with exhalation valve.

Sideburns and/or heavy hair under the chin will prevent a good seal.

H. Moustache is too thick and too long (down around edge of mouth); will contact a sealing surface and could get stuck in an exhalation valve.

The hair on the rest of the face will interfere with a sealing surface.

I. Hair is in sealing region and under the chin.

Hair is in chin cup sealing region and on the side of the face.

J. Moustache is too thick and too long; will contact a sealing surface and interfere with exhalation valve.

Adopted from Z94.4-11 Selection, Use and Care of Respirators
Appendix III: User Seal Check Procedures
Adopted from Z94.4-11 Selection, Use and Care of Respirators

A.1 Negative-pressure user seal check using tight-fitting elastomeric face pieces
A.1.1
A negative-pressure user seal check can be conducted on air-purifying respirators and atmosphere-supplying respirators equipped with tight-fitting face pieces.

This check can be difficult or impossible to conduct on respirators incorporating air-purifying elements that do not allow the inhalation inlets to be temporarily sealed.

A.1.2
The procedure for conducting the negative-pressure user seal check shall be as follows:

(a) The user seal check consists of closing off the inlet opening(s) of the respirator air-purifying elements so that upon inhalation, passage of air into the face piece will not occur. In the case of atmosphere-supplying respirators, the user seal check consists of closing off the air supply hose.

(b) To avoid possible disruption of the facial seal, a non-permeable, flexible plastic wrap may be used to seal the air inlets instead of attempting to maintain a seal with the hands.

(c) The user shall inhale gently and hold a breath for at least 5 s. The face piece will collapse slightly on the face and shall remain collapsed while the breath is held.

(d) During this period, the face piece shall not be disturbed by the user attempting to maintain a seal on the inlet opening of the air-purifying elements.

(e) If the face piece remains collapsed while a breath is being held, the user seal check is successful.

(f) If the face piece does not remain collapsed while a breath is being held, the user shall verify that nothing obstructs the sealing surface, adjust the face piece and harness, and repeat the user seal check.

(g) If the face piece still does not remain collapsed while a breath is being held, then the user shall remove the respirator, inspect the components for the cause of the leakage, correct any problems discovered, or obtain a replacement respirator and repeat the user seal check.

(h) Users shall not use a respirator for which a user seal check cannot be completed successfully.

A.2 Positive-pressure user seal check using tight-fitting elastomeric face pieces
A.2.1
A positive-pressure user seal check can be conducted on respirators equipped with tight-fitting face pieces that contain both inhalation and exhalation valves.

A.2.2
The procedure for conducting the positive-pressure user seal check shall be as follows:

(a) Don the respirator face piece, closing off the exhalation valve or breathing tube, or both, and exhaling gently.
Note: For some respirators, the positive-pressure user seal check requires that the exhalation valve cover be removed, then replaced following completion of the user seal check.

(b) During this period, the face piece shall not be disturbed by the user attempting to maintain a seal on the exhalation valve.

(c) If a slight positive pressure can be maintained inside the face piece without detection of any outward leakage of air, the user seal check is successful.

(d) If a slight positive pressure cannot be maintained inside the face piece for 5 s, the user shall verify that nothing obstructs the sealing surface, adjust the face piece and harness, and repeat the user seal check.

(e) If a slight positive pressure still cannot be maintained inside the face piece, the user shall remove the respirator, inspect the components for the cause of the leakage, correct any problems discovered, or obtain a replacement respirator and repeat the user seal check.

(f) Users shall not use a respirator for which a user seal check cannot be completed successfully.