Flammable and Combustible Liquids Handling Practice

<table>
<thead>
<tr>
<th>Program</th>
<th>Process Safety Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>H&S Discipline</td>
<td>Occupational Safety</td>
</tr>
<tr>
<td>Content Owner</td>
<td>Group Lead, Process Safety Engineering</td>
</tr>
<tr>
<td>Custodian</td>
<td>H&S Programs & Projects</td>
</tr>
<tr>
<td>Document Number</td>
<td>CEN-EHS8213</td>
</tr>
<tr>
<td>Version</td>
<td>1.2</td>
</tr>
<tr>
<td>Review Cycle</td>
<td>3 years</td>
</tr>
<tr>
<td>Revised Date</td>
<td>October 15, 2014</td>
</tr>
<tr>
<td>Issued date</td>
<td>January 1, 2014</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Final</td>
<td>Dec 7, 13</td>
</tr>
<tr>
<td>1.1</td>
<td>Updated</td>
<td>Aug 19, 14</td>
</tr>
<tr>
<td>1.2</td>
<td>• Updated based on comments from MOC discussion board</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fixed broken hyperlinks</td>
<td>Oct 15, 14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Final</td>
<td>Dec 7, 13</td>
</tr>
<tr>
<td>1.1</td>
<td>Updated</td>
<td>Aug 19, 14</td>
</tr>
<tr>
<td>1.2</td>
<td>• Updated based on comments from MOC discussion board</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fixed broken hyperlinks</td>
<td>Oct 15, 14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sign Off</th>
<th>Originator</th>
<th>Reviewer(s)</th>
<th>Approver(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

1.0 Purpose ... 1

2.0 Scope .. 1

3.0 Process Requirements ... 1
 3.1 Liquid Classification .. 1
 3.2 Petroleum Products Clarification ... 2
 3.3 Potential Hazards ... 2
 3.4 Potential Sources of Ignition ... 2
 3.5 General Rules .. 3
 3.6 Personal Protective Equipment ... 5
 3.7 Flammable Liquids Loading and Off-loading .. 5
 3.8 To and From Process Facilitates - Minimum Requirements 5
 3.9 Fuelling ... 7
 3.10 Vehicles ... 8
 3.11 Transportation of Dangerous Goods (TDG) Requirements 8
 3.12 Purging ... 9
 3.13 Bonding and Grounding ... 9
 3.14 Hot Work .. 10

4.0 Roles and Responsibilities ... 11

5.0 Competency ... 12
 5.1 Training .. 12

6.0 Quality Assurance ... 12
 6.1 Performance Measurement .. 12
 6.2 Management of Change .. 12

7.0 Glossary .. 13

8.0 References .. 14
 8.1 External Documents .. 14
 8.2 Internal Documents .. 14
List of Tables
Table 1: Key Properties of Common Liquids ..1
Table 2: Terms and Definitions ..13
Table 3: External Document References...14
Table 4: Internal Document References ...14
1.0 Purpose
The Flammable and Combustible Liquids Handling Practice provides a basic understanding of the fundamentals and potential hazards associated with flammable and combustible liquids. The practice is intended to outline the proper classification of flammable and combustible liquids and the rules and procedures for safe handling.

2.0 Scope
The Flammable and Combustible Liquids Handling Practice applies to Cenovus worksites and encompasses Cenovus work activities involving handling flammable and combustible liquids. Handling in this context, refers to activities such as transferring, dispensing, filling and draining of liquids outside closed process systems.

3.0 Process Requirements

3.1 Liquid Classification
The following classifications are used:

- **Flammable liquids**: Liquids having a flash point below 37.8°C.
- **Combustible liquids**: Liquids having flash point at or above 37.8°C. Combustible liquids that are heated above their flash point must also be treated as flammable liquids.

The table below highlights the key properties with regards to fire safety, for some of the common liquids encountered in Cenovus’s operations. Class in the table references NFPA 30 criteria for flammable or combustible liquids.

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Physical State</th>
<th>Specific Gravity</th>
<th>Boiling Point</th>
<th>Flash Point</th>
<th>LEL</th>
<th>UEL</th>
<th>Class</th>
<th>Flammable or Combustible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>Clear liquid</td>
<td>0.80</td>
<td>64°C</td>
<td>11°C</td>
<td>6.0%</td>
<td>36%</td>
<td>I</td>
<td>Flammable</td>
</tr>
<tr>
<td>Gasoline</td>
<td>Light yellow liquid</td>
<td>0.70 – 0.78</td>
<td>39 – 200°C</td>
<td>-43°C</td>
<td>1.4%</td>
<td>7.6%</td>
<td>I</td>
<td>Flammable</td>
</tr>
<tr>
<td>Diesel</td>
<td>Straw-yellow liquid</td>
<td>0.83 – 0.876</td>
<td>160 – 366°C</td>
<td>>52°C</td>
<td>0.6%</td>
<td>7.5%</td>
<td>II & III</td>
<td>Combustible</td>
</tr>
<tr>
<td>Heavy Crude & Diluent Mixture</td>
<td>Dark brown liquid</td>
<td>0.91 – 0.94</td>
<td>35 – 180°C</td>
<td><-35°C</td>
<td>0.8%</td>
<td>8%</td>
<td>I</td>
<td>Flammable</td>
</tr>
<tr>
<td>Light Crude Oil</td>
<td>Dark brown liquid</td>
<td>0.70 – 0.80</td>
<td>-40 – 530°C</td>
<td><-35°C</td>
<td>0.8%</td>
<td>8%</td>
<td>I</td>
<td>Flammable</td>
</tr>
</tbody>
</table>
3.2 Petroleum Products Clarification

Refined petroleum products, such as lubricants and fuels, defined as flammable or combustible liquids, fall under the scope of the Alberta Fire Code.

Non-refined petroleum products, such as crude oil and heavy oil, fall under the scope of the Alberta Energy Regulator (AER) Directive 55.

This practice outlines the procedures for proper handling of **ALL** flammable and combustible liquids at Cenovus facilities.

3.3 Potential Hazards

Typical hazards associated with the improper handling of flammable or combustible liquids include:

- Release of flammable vapours or the uncontrolled venting of potentially flammable mixtures of hydrocarbons to the atmosphere
- Creation of an ignitable mixture of air and flammable vapour, which could result in a fire or an explosion
- An increased risk of fire and/or explosion when handling flammable liquids in pressurized or contained environments
- Build-up of static electricity and ignition of flammable vapours during transfer operations, or storage
- The loss of tank containment or another type of incident, resulting in a spill or leak of flammable liquids creating a flammable environment
- The creation of an ignition source in a flammable environment
- Mishandling of combustible liquids that are heated above their flash point, which is the point they become flammable liquids
- Systems at high temperatures, pressures and/or in the presence of oxidants resulting in an increased risk due to the effect on the flammability of the environment (see Section 3.1)
- Toxic properties of some flammable or combustible liquids, which can result in the exposure of employees or bystanders

3.4 Potential Sources of Ignition

When handling flammable or combustible liquids, and when simply in the presence of these liquids, it is important to visually inspect the area for potential sources of ignition. Potential sources of ignition include but are not limited to:

- Open flames
- Lightning
- Hot surfaces
- Radiant heat
3.5 General Rules

The following are rules that shall be followed when handling flammable or combustible liquids, as per Cenovus practices (CEN-EHS008, Purging Practice, CEN-EHS030, Bonding and Grounding Practice and CEN-EHS095, Hot Work Practice), the Alberta Fire Code, and AER Directive 55:

1. An open flame is not permitted within 25 m of any potential source of ignitable vapour including wells and storage tanks without a hot work permit.

2. Smoking is only permitted in designated smoking areas and/or at least 25 m away from potential sources of ignitable vapour including wells and storage tanks.

3. A hot work permit must be issued before any spark-producing operation (e.g. welding, cutting) can take place in an area containing flammable liquids.

4. The following ventilation requirements must be met when handling flammable or combustible liquids to ensure that the resulting vapours do not create a flammable or toxic environment. Vapours emitted by flammable and combustible liquids are heavier than air and as a result, they will accumulate in low-lying areas:
 - continuous mechanical ventilation in any area where flammable liquids are being handled in a way that vapours are released
 - either natural or continuous mechanical ventilation in any area where flammable liquids are being handled in a way that does not release vapours and in areas where combustible liquids are being handled

5. Absorbent materials must be used to clean small spills and leaks. The following two conditions apply when handling flammable or combustible liquids:
 - absorbent materials shall be available in the areas where flammable and combustible liquids are being handled
- used rags and similar materials contaminated with flammable liquids or combustible liquids are a fire hazard and must be stored in designated oily rag receptacles

6. Dispensing flammable or combustible liquids from containers larger than 30 L, must be done using a pump or a self-closing valve:
 - in the case where a self-closing valve is employed, it shall not be locked in the open position by any means and for any duration of time
 - proper bonding and grounding practices shall be applied

7. Flammable and combustible liquids that are not in use must be properly stored. This is not referencing flammable or combustible liquids in process. This is intended for miscellaneous storage of small quantities of flammable or combustible liquids:
 - containers with flammable or combustible liquids must be kept closed and must be stored in either a flammable liquid cabinet, a flammable liquid storage room or a designated outdoor storage area
 - flammable or combustible liquids are not to be stored in or adjacent to exits, elevators or principal routes that provide access to exits
 - containers and materials stored in flammable materials storage rooms must be arranged in a way that allows for aisles of at least 1 m in width
 - flammable and combustible liquids are not to be stored for longer than two years without being sold, consumed, or discarded
 - portable storage containers for flammable liquids must meet ULC/ORD-C30 – Safety Containers or CSA-B376 – Portable Containers for Gasoline and Other Petroleum Fuels. The use of other containers is allowed if:
 - the purity of the liquid could be affected by the container or the liquid could cause excessive corrosion of the container
 - the capacity of the container conforms with the volume restrictions
 - it is a sample container used for quality control purposes or testing (Work Safe Alberta, 2009)
 - flammable liquids must not be handled in or next to basements or pits as vapours emitted by flammable liquids are heavier than air and will accumulate in low-lying areas

For additional information and requirements, see Section 4.2 of the Alberta Fire Code.
8. Flammable liquids shall not be handled in or next to basements or pits. Vapours emitted by flammable liquids are heavier than air and will accumulate in lower lying areas.

9. When taking samples of flammable liquids, the rules stated above shall apply, an appropriate sample container shall be used, and measures shall be taken to ensure proper ventilation. In addition, the bonding and grounding practice and the hot work practices shall also apply.

3.6 Personal Protective Equipment

1. When transferring hot fluids (60°C and above), one shall wear a liquid and fire resistant rain jacket and pants or overalls, insulated rubber gloves, rubber boots, and chemical goggles or a face shield.

2. When handling sour (H₂S), flammable or combustible liquid product, one shall adhere to the CEN-EHS143, Hydrogen Sulphide Code of Practice in addition to this practice.

3.7 Flammable Liquids Loading and Off-loading

Loading and off-loading flammable liquids to and from trucks, railcars, and tanks presents a special hazard. Cenovus’s CEN-EHS030, Bonding and Grounding Practice must be followed, in addition to this practice. This applies to fluid handling and transportation by tank, vacuum trucks, and rail cars that transport flammable fluids:

- To and from well sites during drilling and completions, and well workover operations
- From single-well oil batteries and gas wells to product receiving or disposal facilities
- To and from central batteries, compressor stations, and other storage facilities
- To and from process facilities

3.8 To and From Process Facilities - Minimum Requirements

There shall be an approved written procedure for all loading and off-loading operations involving flammable and combustible liquids. In addition to the other requirements presented in this document, all flammable liquid loading and off-loading procedures must include the following requirements:

- Instructions and precautions for safe facility entry are communicated, including any specific instructions that may be required for sweet or sour facility Personal Protective Equipment requirements.
- Personal Protective Equipment (PPE) requirements
- Hazard assessment and risk mitigation requirements are met.
Potential for all environmental impacts (e.g. drip trays under hose connection points) are addressed.

Appropriate bonding and grounding activities are practiced prior to the loading/off-loading of fluids commencing.

Hot work permits are used as required in Section 3.14.

Parking brakes and wheel chocks are appropriately used.

No loading or unloading is performed during hazardous events (e.g. electrical storms, while conducting maintenance on the tanks or trucks).

The placement of tank truck vent lines are not in, or directed at, the immediate work area.

Switch loading precautions are made. Switch loading refers to the switch of product load types (e.g. between sour water and crude oil). Switch loading can result in ignition when low-vapour pressure products are loaded into a tank that had contained a flammable vapour product from its previous usage.

The potential for odour complaints when transporting sour fluids through populated areas is addressed.

3.8.1 Switch Loading

The term "switch loading" describes a situation when a Class II or Class III liquid is loaded into a tank vehicle that previously contained a Class I liquid. To prevent hazards due to a change in flash point of liquids, any tank car or tank vehicle that has previously contained a Class I liquid shall not be loaded with a Class II or Class III liquid unless proper precautions are taken.

When a tank is emptied of a cargo of Class I liquid, a mixture of vapour and air is left, which can be, and often is, within the flammable range. When such a tank is refilled with a Class I liquid, any charge that reaches the tank shell will be bled off by the required bond wire. Also, there will be no flammable mixture at the surface of the rising liquid level because the Class I liquid produces at its surface a mixture too rich to be ignitable. This is the situation commonly existing in tank vehicles in gasoline service. If, as occasionally happens, a static charge does accumulate on the surface sufficient to produce a spark, it occurs in a too-rich, non-ignitable atmosphere and thus causes no harm.

A very different situation arises if the liquid is “switch loaded,” that is, when a Class II or Class III liquid is loaded into a tank vehicle that previously contained a Class I liquid. Class II or Class III liquids are not necessarily more potent static generators than the Class I liquid previously loaded, but the atmosphere in contact with the rising liquid surface is not enriched to bring it out of the flammable range. If circumstances are such that a spark should occur either across the liquid surface or from the liquid surface to some other object, the spark occurs in a mixture that can be within the flammable range, and an explosion can result.
It is emphasized that bonding the tank to the fill stem is not sufficient; a majority of the recorded explosions have occurred when it was believed the tank had been adequately bonded. The electrostatic potential that is responsible for the spark exists inside the tank on the surface of the liquid and cannot be removed by bonding.

Measures to reduce the change of such internal static ignition can be one or more of the following:

- Avoid spark promoters. Conductive objects floating on the liquid surface increase the charge of sparking to the tank wall. Metal gauge rods or other objects projecting into the vapour space can create a spark gap as the rising liquid level approaches the projection. A common precaution is to require that fill pipes (downspouts) reach as close to the bottom of the tank as practicable. Any operation such as sampling, taking liquid temperature, or gauging that involves lowering a conductive object through an opening into the vapour space on the liquid should be deferred until at least 1 minute after flow has ceased. This will permit any surface charge to relax.

- Reduce the static generation by one or more of the following:
 - Avoid splash filling and upward spraying of liquid where bottom filling is used.
 - Employ reduced fill rates at the start of filling through downspouts, until the end of the spout is submerged. A fill rate of 3 ft/sec (0.9 m/sec) is generally thought to be a suitable precaution.
 - Where filters are employed, provide relaxation time in the piping downstream from the filters. A relation time of 30 seconds is generally considered to be a suitable precaution.
 - Eliminate the flammable mixture before switch loadings by gas freeing or inerting.

3.9 Fuelling

One shall adhere to the following precautions:

1. Prior to fuelling a vehicle, ensure that the vehicle is turned off and that a fire extinguisher is located nearby (in the vehicle or at the gas pump).

2. While fuelling a vehicle, do not smoke or use electronic devices.

3. When fuelling a vehicle, do not enter and then exit the vehicle while it is being filled. If you do so, you must dissipate any static charges away from the fuelling nozzle prior to touching the nozzle.

4. Do not fill fuel containers placed on a truck tailgate or bed surface. Follow the service station recommended practice of placing portable gasoline containers on the ground while filling.
5. When fuelling on a Cenovus worksite, wear Cenovus approved, flame resistant antistatic clothing (NOMEX IIIA) and antistatic footwear to minimize static accumulation on clothing.

Note: The UFA at a Cenovus facility is considered a Cenovus worksite.

3.10 Vehicles

Vehicles with internal combustion engines (gas or diesel) will not be permitted within the following limits, unless a hot work permit has been issued (see Section 3.14) and adequate gas monitoring is in place:

1. Within electrically classified areas such as dikes
2. No closer than **3 metres** to a producing well where the wellhead is intact or when the transfer is part of the work
3. No closer than **25 metres** to a well when continuous work is being undertaken on the well
4. No closer than **7.5 metres** from the vents of a production tank, a gas process, or pigging enclosures
5. No closer than **7.5 metres** from an open production or rig tank

Note: During swabbing operations, the tank truck must be at least **50 metres** from the well bore.

3.11 Transportation of Dangerous Goods (TDG) Requirements

3.11.1 Documentation and Safety Markings

All goods that are regulated under the Transportation of Dangerous Goods (TDG) legislation must be documented and marked in accordance with the TDG regulations. At a minimum, all loads should include a complete bill of lading, vehicle safety placards, material safety data sheets, and emergency contact information.

A Permit for Equivalent Level of Safety may apply to certain shipments, which may exempt one or more of the TDG regulation requirements from a shipment. For more information on Cenovus’s Permit for Equivalent Level of Safety, please visit the health and safety core documentation website.

3.11.2 Dangerous Goods Transport Tanks

All tanks used in service of transporting dangerous goods must have a plate attached to the shell or to an integral part of the structure of the tank. Any tank built after July 1, 1995, must be built to the CSA B620 standard and must have a plate attached to it. To confirm the tank type and quality, verify the following information:

- TC specification
- Date of manufacture
3.11.3 Petroleum Crude

Petroleum crude oil and condensate are classified as Flammable Liquids, Class 3 and can be designated packing group I, II, or III. The packing group depends on the flash point of the product. The MSDS should always be consulted for packing class.

3.12 Purging

Purging is used to reduce the risk of creating a flammable mixture of oxygen and a flammable vapour in pipes, vessels, and other equipment. It is possible that a flammable vapour may come in contact with oxygen during the purging process. It is important to know the lower explosive limit (LEL) and upper explosive limit (UEL) of the flammable vapours involved when purging and to continuously monitor the vapour concentration to avoid approaching the flammable range of the vapour and air mixture. Additional precautions shall be taken to eliminate any possible sources of ignition. Review CEN-EHS008, Purging Practice.

3.13 Bonding and Grounding

Bonding and grounding are required to prevent the build-up of static electricity, which can be a source of ignition in a flammable environment. For this to occur, four conditions must be fulfilled:

1. A means of generating an electrostatic charge must be present
2. A means of accumulating an electrostatic charge that is capable of producing a spark must be present
3. A means of discharging the accumulated electrostatic charge across a spark gap must be present
4. An ignitable vapour-air mixture must be present in the spark gap

In all cases where flammable liquids and/or vapours can be present, Cenovus's CEN-EHS030, Bonding and Grounding Practice shall be consulted.

3.13.1 Bonding and Grounding for Liquid Transfer

During the transfer of flammable liquids from a tank or drum to a smaller container, one shall adhere to the following statements in addition to Cenovus's CEN-EHS030, Bonding and Grounding Practice:

1. Ground the wire from the drum to the grounded pipe, building framework, or other ground.
2. Use a ULC/FM approved drum dispensing faucet with a metallic flexible fill line, which can be placed in contact with the safety can and inserted into can to avoid splashing.
3. Use a ULC/FM approved steel safety can/container for handling flammable solvents or chemicals. The safety can/container should include several fire safety features:
➢ self-closing, spring loaded dispensing and fill spout, which prevent spills

➢ integral flame arrestor on fill spout

➢ pressure vent on fill spout to avoid can exploding when exposed to fire

➢ bond wire clipped onto drum and safety can/container to ensure electrical continuity

4. Pressure or vacuum the drum safety vent to protect the drum against over and under-pressuring and to limit the venting of vapours.

Note: Bonding and grounding alone does not provide adequate fire safety for flammable liquids transfer. Approved safety cans, dispensing devices and drum safety vents are required.

3.13.2 Bonding and Grounding for Fluid Transfer from Truck-in and -out

During the transfer of flammable liquids from truck-in and -out, one shall adhere to the following statements in addition to Cenovus’s CEN-EHS030, Bonding and Grounding Practice:

1. Ensure that bonding and grounding connections are used for truck-in and truck-out. Signage and written Cenovus and contract truck company procedures shall emphasize these practices.

2. Inspect ground wires, clamps, and terminals and connections during facility and equipment inspections.

3. Some bonding and grounding systems include a warning light indicating when proper bonding is achieved, or even an interlock (permissive) to prevent fluid transfer when un-bonded. Ensure that these warning lights and interlocks are operational and tested as part of the facility maintenance management system.

4. Ensure that the hoses used for the fluid transfer are approved for the fluids they convey, are in good operating condition, and that there is adequate electrical continuity in the hose for bonding.

5. Ensure that an annual test of the facility bonding and grounding is conducted as part of the facility maintenance management system.

3.14 Hot Work

Hot work refers to any task involving an open flame or producing heat or sparks including, but not limited to:

- Cutting, welding, burning, air gouging, riveting, drilling, grinding, and chipping

- Using electrical equipment not classified for use in a hazardous location

- Introducing a combustion engine to a work process
When hot work is taking place, the presence of a flammable mixture of vapour and air can result in a fire or an explosion. In this industry, it is inevitable that hot work will be performed. Anytime hot work is involved, Cenovus’s CEN-EHS095, Hot Work Practice shall be consulted.

4.0 Roles and Responsibilities

Roles and responsibilities for H&S documents are described in CEN-EHS234, Roles and Responsibilities Standard.

<table>
<thead>
<tr>
<th>Role</th>
<th>Description</th>
</tr>
</thead>
</table>
| Business Leaders and Frontline Supervisors | • Communicate and implement this practice at their operations or functional areas of authority
• Demonstrate ownership and leadership by actively setting a positive example
• Allocate and make available the necessary financial and human resources that are required to functionally implement this document
• Confirm all workers are aware of their roles and responsibilities outlined in the process requirements section of this document
• Confirm workers are trained, knowledgeable, experienced and competent on this subject
• Coach and correct workers who do not understand or comply with the requirements of this document
• Provide feedback to the document owner or representative concerning proposed changes or improvements to this document |
| Operations Health & Safety Field Teams | • Conduct worksite observations and assessments on a regular basis to verify compliance with the expectations described in this document
• Assist with the implementation and communication of the documented requirements
• Provide feedback to the document owner or representative concerning proposed changes or improvements to this document |
| Central Health & Safety Services | • Monitor and collect feedback related to this document to verify program effectiveness
• Lead document reviews and revisions as per the expectations described in this document
• Provide subject matter expertise when requested by Business Leaders or other functional teams |
| Assurance Teams (COMS Assurance and EHSR Compliance Audit) | • Lead, organize and conduct audits to verify compliance, identify gaps and suggest improvement opportunities |
| Business Support Teams | • Provide subject matter expertise when requested by Business Leaders or other functional teams |
Role Description

<table>
<thead>
<tr>
<th>Role</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Providers</td>
<td>• Comply with the Cenovus confined space expectations described within this document
• If required, develop and implement a Confined Space Entry (CSE) Code of Practice and entry procedures that satisfy company-specific operational needs and align with the minimum requirements set forth in this document</td>
</tr>
</tbody>
</table>

5.0 Training and Competency

Competency describes the knowledge and skills required to successfully perform the technical aspects of a job. A worker must be able to demonstrate competency in safely performing work tasks or using equipment.

5.1 Training

Frontline supervisors, field H&S advisors, workers, contractors and service providers must review the content and adhere to the requirements described in this document.

6.0 Quality Assurance

6.1 Performance Measurement

Compliance with this practice and program effectiveness shall be assessed through program assessments and internal audits, or other measurement criteria as specified in the COMS Assurance Standard.

Business functions or departments impacted by this practice must include compliance and program effectiveness verifications in their business assurance program. Performance will be monitored and reported within the responsible departments at least every three years.

6.2 Management of Change

The document owner will complete and document reviews of this practice as follows:

• at minimum once every three years
• if there is a significant regulation or industry best practice change that indicates the need for review
• if an incident investigation indicates the causes were related to unclear or inadequate written instructions described within this document

If frequent and multiple variances are required due to operational needs, the reason(s) will be investigated and the document owner will determine if there is a business need to update this document.

If submitted MOC requests indicate gaps or significant improvement opportunities, the document owner will determine if there is a business need to update this document.

Proposed changes to this practice can be directed to H&S Programs and Projects.
7.0 Glossary

Definitions and acronyms for safety documents are described in CEN-EHS243, Definitions and Acronyms. The following definitions and acronyms are specific to this document.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiling point</td>
<td>The temperature at which the vapour pressure of a liquid equals the surrounding atmospheric pressure. Atmospheric pressure is 101.4kPa (14.7psi). As the operating temperature approaches the boiling point of a liquid, the transition from liquid to gas is faster and the vapour concentration can be very high. In the case of a flammable liquid, this would create a highly flammable environment.</td>
</tr>
<tr>
<td>Flash point</td>
<td>The minimum temperature of a liquid at which sufficient vapour is given off to form an ignitable mixture with the air near the surface of the liquid or within the vessel used. This is a critical property for evaluating the hazard of a flammable or combustible liquid.</td>
</tr>
<tr>
<td>Lower explosive limit (LEL)</td>
<td>The minimum concentration of a flammable vapour in the air below which ignition will not occur. An increase in temperature, pressure, and/or oxidant concentration will result in a lower LEL.</td>
</tr>
<tr>
<td>Upper explosive limit (UEL)</td>
<td>The maximum concentration of a flammable vapour in the air above which ignition cannot occur. An increase in temperature, pressure, and/or oxidant concentration will result in a higher UEL.</td>
</tr>
<tr>
<td>Switch loading</td>
<td>The term switch loading describes a situation when a Class II or Class III liquid is loaded into a tank vehicle that previously contained a Class I liquid. To prevent hazards due to a change in flash point of liquids, any tank car or tank vehicle that has previously contained a Class I liquid shall not be loaded with a Class II or Class III liquid unless proper precautions are taken. (See Section 3.8.1)</td>
</tr>
</tbody>
</table>

Notes:

8.0 References

8.1 External Documents

<table>
<thead>
<tr>
<th>Document Type</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulatory</td>
<td>Alberta Permit for Equivalent Level of Safety Package</td>
</tr>
<tr>
<td>Regulatory</td>
<td>Canada – Equivalency Certificates</td>
</tr>
<tr>
<td>Document Type</td>
<td>Document Title</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Regulatory</td>
<td>Saskatchewan OH&S Regulation – Part III</td>
</tr>
<tr>
<td>Regulatory</td>
<td>Transportation of Dangerous Good Regulation</td>
</tr>
<tr>
<td>Alberta Transportation</td>
<td>Dangerous Goods Transport Tanks</td>
</tr>
<tr>
<td>Alberta Transportation</td>
<td>Transportation of Sour Water and Sour Crude Oil</td>
</tr>
<tr>
<td>Alberta Transportation</td>
<td>All About Permits for Equivalent Level of Safety</td>
</tr>
<tr>
<td>Canada Standards Association (CSA)</td>
<td>CSA Standard B620-03, Highway tanks and portable tanks for the transportation of dangerous goods</td>
</tr>
<tr>
<td>Canada Standards Association (CSA)</td>
<td>CSA Standard B621-01, Selection and use of highway tanks, portable tanks, cargo compartments, and containers for the transportation of dangerous goods, Classes 3, 4, 5, 6.1, 8, and 9</td>
</tr>
</tbody>
</table>

8.2 Internal Documents

Table 4: Internal Document References

<table>
<thead>
<tr>
<th>Document Type or Number</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy</td>
<td>Corporate Responsibility Policy</td>
</tr>
<tr>
<td>Framework</td>
<td>Cenovus Operations Management System (COMS)</td>
</tr>
<tr>
<td>CEN-EHS243</td>
<td>H&S Definitions and Acronyms Standard</td>
</tr>
<tr>
<td>CEN-EHSReg787</td>
<td>Regulatory Definitions and Acronyms</td>
</tr>
<tr>
<td>CEN-EHS008</td>
<td>Purging Practice</td>
</tr>
<tr>
<td>CEN-EHS095</td>
<td>Hot Work Practice</td>
</tr>
<tr>
<td>CEN-EHS143</td>
<td>Hydrogen Sulphide Code of Practice</td>
</tr>
</tbody>
</table>